
Introduction to Julia for R Users

Hans Werner Borchers
Duale Hochschule Mannheim

Köln R User Group Meetup
December 2014

Hans W Borchers Köln R User Group Meetup 2014-12-12 1 / 32

Introduction to Julia for R Users Overview

New programming languages since 2002

2002 Io Smalltalk, LISP; prototype-based
2003 Nemerle CLI; C#-like, LISP
2003 Scala JVM; Java, Smalltalk; stat.-typed
2004 Groovy JVM; Java, Python, Ruby, Smalltalk
2004 Nimrod Python, Pascal; statically-typed
2005 F# (Microsoft) CLI; C#-like, OCaml, Haskell
2007 Clojure JVM, CLR; LISP, Haskell, Erlang
2009 Go (Google) C, Oberon; statically typed
2010 Rust (Mozilla) C++-like, Erlang, LISP; LLVM
2012 Julia MATLAB (, R); mult.dispatch; LLVM
2014 Swift (Apple) Objective-C; LLVM

See also: Python+numba, LuaJIT, Rubinius, RLLVM, Haskell, Matlab(?), ...

Hans W Borchers Köln R User Group Meetup 2014-12-12 2 / 32

Introduction to Julia for R Users Overview

The LLVM compiler infrastructure project
“The LLVM project provides libraries for a modern, industrial strength
optimizer, along with code generation support [and integrated linker]
for many CPUs.The libraries are build around a well specified code
representation, called LLVM Intermediate Representation (IR).”

2012 ACM Software System Award

Hans W Borchers Köln R User Group Meetup 2014-12-12 3 / 32

Introduction to Julia for R Users Overview

What is Julia?

“Julia is a high-level, high-performance dynamic
programming language for technical computing,
with a syntax that is familiar to users of other
technical [scientific] computing environments.

“Julia’s LLVM-based just-in-time (JIT) compiler
combined with the language’s design allow it to
approach and often match the performance of C.

“The core of the Julia implementation is licensed
under the MIT license. Various libraries used by the
Julia environment include their own licenses such as
the GPL, LGPL, and BSD.”

Hans W Borchers Köln R User Group Meetup 2014-12-12 4 / 32

Introduction to Julia for R Users Overview

40+ scientific computing environments

APL Axiom Ch Colt[Java] Euler FreeMat GAUSS
GDL/PV-WAVE Genius gretl IDL Igor_Pro jLab

LabView Magma Maple Mathcad Mathematica MATLAB
Maxima MuPad O-Matrix Octave OriginLab Ox
PARI/GP PDL[Perl] R RLaBplus ROOT S-PLUS

SAGE SAS SCaViS SciLab SciPy[Python] SciRuby
Speakeasy Stata SciLua[LuaJIT] Yorick

Hans W Borchers Köln R User Group Meetup 2014-12-12 5 / 32

Introduction to Julia for R Users Julia syntax and development

REPL: “Hello, world.” examples

» h = "Hello"; w = "world"
» println("$h, $w.")
Hello, world.

» v = [1, 2]; A = [1 2; 3 4];
» w = A * v;
» A \ w
2-element Array{Float64,1}:
1.0
2.0

» f(x) = x * exp(x);
» map(f, [0:0.1:1])
11-element Array{Float64,1}:
...

Hans W Borchers Köln R User Group Meetup 2014-12-12 6 / 32

Introduction to Julia for R Users Julia syntax and development

Niceties of Julia Syntax

a = [1.0, 2, 3]; b = a; b[1] = 0; a # 0,2,3

γ = 0.57721_56649_01532_86

f(x,y,z) = 2x + 3y + 4z

r = 1//3 + 1//6 + 1//12 + 1//15 # 13//20

factorial(big(100))

H = [1/(i+j-1) for i=1:8, j=1:8]

22 < pi^e < e^pi < 24 # true

println("The result of pi*e is $(pi*e).")

function f(x...) for a in x println(a) end end

@time q,err = quadgk(sin, 0, pi)

[1:5] |> x->x.^2 |> sum |> inv

s = :bfgs # symbol

Hans W Borchers Köln R User Group Meetup 2014-12-12 7 / 32

Introduction to Julia for R Users Julia syntax and development

Niceties of Julia Syntax

a = [1.0, 2, 3]; b = a; b[1] = 0; a # 0,2,3

γ = 0.57721_56649_01532_86

f(x,y,z) = 2x + 3y + 4z

r = 1//3 + 1//6 + 1//12 + 1//15 # 13//20

factorial(big(100))

H = [1/(i+j-1) for i=1:8, j=1:8]

22 < pi^e < e^pi < 24 # true

println("The result of pi*e is $(pi*e).")

function f(x...) for a in x println(a) end end

@time q,err = quadgk(sin, 0, pi)

[1:5] |> x->x.^2 |> sum |> inv

s = :bfgs # symbol

Hans W Borchers Köln R User Group Meetup 2014-12-12 7 / 32

Introduction to Julia for R Users Julia syntax and development

Niceties of Julia Syntax

a = [1.0, 2, 3]; b = a; b[1] = 0; a # 0,2,3

γ = 0.57721_56649_01532_86

f(x,y,z) = 2x + 3y + 4z

r = 1//3 + 1//6 + 1//12 + 1//15 # 13//20

factorial(big(100))

H = [1/(i+j-1) for i=1:8, j=1:8]

22 < pi^e < e^pi < 24 # true

println("The result of pi*e is $(pi*e).")

function f(x...) for a in x println(a) end end

@time q,err = quadgk(sin, 0, pi)

[1:5] |> x->x.^2 |> sum |> inv

s = :bfgs # symbol

Hans W Borchers Köln R User Group Meetup 2014-12-12 7 / 32

Introduction to Julia for R Users Julia syntax and development

Niceties of Julia Syntax

a = [1.0, 2, 3]; b = a; b[1] = 0; a # 0,2,3

γ = 0.57721_56649_01532_86

f(x,y,z) = 2x + 3y + 4z

r = 1//3 + 1//6 + 1//12 + 1//15 # 13//20

factorial(big(100))

H = [1/(i+j-1) for i=1:8, j=1:8]

22 < pi^e < e^pi < 24 # true

println("The result of pi*e is $(pi*e).")

function f(x...) for a in x println(a) end end

@time q,err = quadgk(sin, 0, pi)

[1:5] |> x->x.^2 |> sum |> inv

s = :bfgs # symbol

Hans W Borchers Köln R User Group Meetup 2014-12-12 7 / 32

Introduction to Julia for R Users Julia syntax and development

Niceties of Julia Syntax

a = [1.0, 2, 3]; b = a; b[1] = 0; a # 0,2,3

γ = 0.57721_56649_01532_86

f(x,y,z) = 2x + 3y + 4z

r = 1//3 + 1//6 + 1//12 + 1//15 # 13//20

factorial(big(100))

H = [1/(i+j-1) for i=1:8, j=1:8]

22 < pi^e < e^pi < 24 # true

println("The result of pi*e is $(pi*e).")

function f(x...) for a in x println(a) end end

@time q,err = quadgk(sin, 0, pi)

[1:5] |> x->x.^2 |> sum |> inv

s = :bfgs # symbol

Hans W Borchers Köln R User Group Meetup 2014-12-12 7 / 32

Introduction to Julia for R Users Julia syntax and development

Niceties of Julia Syntax

a = [1.0, 2, 3]; b = a; b[1] = 0; a # 0,2,3

γ = 0.57721_56649_01532_86

f(x,y,z) = 2x + 3y + 4z

r = 1//3 + 1//6 + 1//12 + 1//15 # 13//20

factorial(big(100))

H = [1/(i+j-1) for i=1:8, j=1:8]

22 < pi^e < e^pi < 24 # true

println("The result of pi*e is $(pi*e).")

function f(x...) for a in x println(a) end end

@time q,err = quadgk(sin, 0, pi)

[1:5] |> x->x.^2 |> sum |> inv

s = :bfgs # symbol

Hans W Borchers Köln R User Group Meetup 2014-12-12 7 / 32

Introduction to Julia for R Users Julia syntax and development

Niceties of Julia Syntax

a = [1.0, 2, 3]; b = a; b[1] = 0; a # 0,2,3

γ = 0.57721_56649_01532_86

f(x,y,z) = 2x + 3y + 4z

r = 1//3 + 1//6 + 1//12 + 1//15 # 13//20

factorial(big(100))

H = [1/(i+j-1) for i=1:8, j=1:8]

22 < pi^e < e^pi < 24 # true

println("The result of pi*e is $(pi*e).")

function f(x...) for a in x println(a) end end

@time q,err = quadgk(sin, 0, pi)

[1:5] |> x->x.^2 |> sum |> inv

s = :bfgs # symbol

Hans W Borchers Köln R User Group Meetup 2014-12-12 7 / 32

Introduction to Julia for R Users Julia syntax and development

Niceties of Julia Syntax

a = [1.0, 2, 3]; b = a; b[1] = 0; a # 0,2,3

γ = 0.57721_56649_01532_86

f(x,y,z) = 2x + 3y + 4z

r = 1//3 + 1//6 + 1//12 + 1//15 # 13//20

factorial(big(100))

H = [1/(i+j-1) for i=1:8, j=1:8]

22 < pi^e < e^pi < 24 # true

println("The result of pi*e is $(pi*e).")

function f(x...) for a in x println(a) end end

@time q,err = quadgk(sin, 0, pi)

[1:5] |> x->x.^2 |> sum |> inv

s = :bfgs # symbol

Hans W Borchers Köln R User Group Meetup 2014-12-12 7 / 32

Introduction to Julia for R Users Julia syntax and development

Niceties of Julia Syntax

a = [1.0, 2, 3]; b = a; b[1] = 0; a # 0,2,3

γ = 0.57721_56649_01532_86

f(x,y,z) = 2x + 3y + 4z

r = 1//3 + 1//6 + 1//12 + 1//15 # 13//20

factorial(big(100))

H = [1/(i+j-1) for i=1:8, j=1:8]

22 < pi^e < e^pi < 24 # true

println("The result of pi*e is $(pi*e).")

function f(x...) for a in x println(a) end end

@time q,err = quadgk(sin, 0, pi)

[1:5] |> x->x.^2 |> sum |> inv

s = :bfgs # symbol

Hans W Borchers Köln R User Group Meetup 2014-12-12 7 / 32

Introduction to Julia for R Users Julia syntax and development

Niceties of Julia Syntax

a = [1.0, 2, 3]; b = a; b[1] = 0; a # 0,2,3

γ = 0.57721_56649_01532_86

f(x,y,z) = 2x + 3y + 4z

r = 1//3 + 1//6 + 1//12 + 1//15 # 13//20

factorial(big(100))

H = [1/(i+j-1) for i=1:8, j=1:8]

22 < pi^e < e^pi < 24 # true

println("The result of pi*e is $(pi*e).")

function f(x...) for a in x println(a) end end

@time q,err = quadgk(sin, 0, pi)

[1:5] |> x->x.^2 |> sum |> inv

s = :bfgs # symbol

Hans W Borchers Köln R User Group Meetup 2014-12-12 7 / 32

Introduction to Julia for R Users Julia syntax and development

Niceties of Julia Syntax

a = [1.0, 2, 3]; b = a; b[1] = 0; a # 0,2,3

γ = 0.57721_56649_01532_86

f(x,y,z) = 2x + 3y + 4z

r = 1//3 + 1//6 + 1//12 + 1//15 # 13//20

factorial(big(100))

H = [1/(i+j-1) for i=1:8, j=1:8]

22 < pi^e < e^pi < 24 # true

println("The result of pi*e is $(pi*e).")

function f(x...) for a in x println(a) end end

@time q,err = quadgk(sin, 0, pi)

[1:5] |> x->x.^2 |> sum |> inv

s = :bfgs # symbol

Hans W Borchers Köln R User Group Meetup 2014-12-12 7 / 32

Introduction to Julia for R Users Julia syntax and development

Niceties of Julia Syntax

a = [1.0, 2, 3]; b = a; b[1] = 0; a # 0,2,3

γ = 0.57721_56649_01532_86

f(x,y,z) = 2x + 3y + 4z

r = 1//3 + 1//6 + 1//12 + 1//15 # 13//20

factorial(big(100))

H = [1/(i+j-1) for i=1:8, j=1:8]

22 < pi^e < e^pi < 24 # true

println("The result of pi*e is $(pi*e).")

function f(x...) for a in x println(a) end end

@time q,err = quadgk(sin, 0, pi)

[1:5] |> x->x.^2 |> sum |> inv

s = :bfgs # symbol

Hans W Borchers Köln R User Group Meetup 2014-12-12 7 / 32

Introduction to Julia for R Users Julia syntax and development

Some differences to R

Julia uses = for variable assignment.

Vectors and matrices defined through brackets [,];
matrix multiplication: *, operations: .* ./ .+;
elementwise comparisons: .== .<= .< etc.
No parentheses required in if, for, while constructs.
Use true instead of TRUE; 0 or 1 are not booleans.
Julia distinguishes scalars, vectors, matrices, or arrays by type;
utilize type declarations for error handling.
Function arguments are provided by reference, not by value.
Consequence: Functions can mutate their arguments.
Multiple return values through tuples; no lists or named vectors.
Statistics functionality is provided in packages, not in Julia base.

Hans W Borchers Köln R User Group Meetup 2014-12-12 8 / 32

Introduction to Julia for R Users Julia syntax and development

Some differences to R

Julia uses = for variable assignment.
Vectors and matrices defined through brackets [,];
matrix multiplication: *, operations: .* ./ .+;
elementwise comparisons: .== .<= .< etc.

No parentheses required in if, for, while constructs.
Use true instead of TRUE; 0 or 1 are not booleans.
Julia distinguishes scalars, vectors, matrices, or arrays by type;
utilize type declarations for error handling.
Function arguments are provided by reference, not by value.
Consequence: Functions can mutate their arguments.
Multiple return values through tuples; no lists or named vectors.
Statistics functionality is provided in packages, not in Julia base.

Hans W Borchers Köln R User Group Meetup 2014-12-12 8 / 32

Introduction to Julia for R Users Julia syntax and development

Some differences to R

Julia uses = for variable assignment.
Vectors and matrices defined through brackets [,];
matrix multiplication: *, operations: .* ./ .+;
elementwise comparisons: .== .<= .< etc.
No parentheses required in if, for, while constructs.

Use true instead of TRUE; 0 or 1 are not booleans.
Julia distinguishes scalars, vectors, matrices, or arrays by type;
utilize type declarations for error handling.
Function arguments are provided by reference, not by value.
Consequence: Functions can mutate their arguments.
Multiple return values through tuples; no lists or named vectors.
Statistics functionality is provided in packages, not in Julia base.

Hans W Borchers Köln R User Group Meetup 2014-12-12 8 / 32

Introduction to Julia for R Users Julia syntax and development

Some differences to R

Julia uses = for variable assignment.
Vectors and matrices defined through brackets [,];
matrix multiplication: *, operations: .* ./ .+;
elementwise comparisons: .== .<= .< etc.
No parentheses required in if, for, while constructs.
Use true instead of TRUE; 0 or 1 are not booleans.

Julia distinguishes scalars, vectors, matrices, or arrays by type;
utilize type declarations for error handling.
Function arguments are provided by reference, not by value.
Consequence: Functions can mutate their arguments.
Multiple return values through tuples; no lists or named vectors.
Statistics functionality is provided in packages, not in Julia base.

Hans W Borchers Köln R User Group Meetup 2014-12-12 8 / 32

Introduction to Julia for R Users Julia syntax and development

Some differences to R

Julia uses = for variable assignment.
Vectors and matrices defined through brackets [,];
matrix multiplication: *, operations: .* ./ .+;
elementwise comparisons: .== .<= .< etc.
No parentheses required in if, for, while constructs.
Use true instead of TRUE; 0 or 1 are not booleans.
Julia distinguishes scalars, vectors, matrices, or arrays by type;
utilize type declarations for error handling.

Function arguments are provided by reference, not by value.
Consequence: Functions can mutate their arguments.
Multiple return values through tuples; no lists or named vectors.
Statistics functionality is provided in packages, not in Julia base.

Hans W Borchers Köln R User Group Meetup 2014-12-12 8 / 32

Introduction to Julia for R Users Julia syntax and development

Some differences to R

Julia uses = for variable assignment.
Vectors and matrices defined through brackets [,];
matrix multiplication: *, operations: .* ./ .+;
elementwise comparisons: .== .<= .< etc.
No parentheses required in if, for, while constructs.
Use true instead of TRUE; 0 or 1 are not booleans.
Julia distinguishes scalars, vectors, matrices, or arrays by type;
utilize type declarations for error handling.
Function arguments are provided by reference, not by value.

Consequence: Functions can mutate their arguments.
Multiple return values through tuples; no lists or named vectors.
Statistics functionality is provided in packages, not in Julia base.

Hans W Borchers Köln R User Group Meetup 2014-12-12 8 / 32

Introduction to Julia for R Users Julia syntax and development

Some differences to R

Julia uses = for variable assignment.
Vectors and matrices defined through brackets [,];
matrix multiplication: *, operations: .* ./ .+;
elementwise comparisons: .== .<= .< etc.
No parentheses required in if, for, while constructs.
Use true instead of TRUE; 0 or 1 are not booleans.
Julia distinguishes scalars, vectors, matrices, or arrays by type;
utilize type declarations for error handling.
Function arguments are provided by reference, not by value.
Consequence: Functions can mutate their arguments.

Multiple return values through tuples; no lists or named vectors.
Statistics functionality is provided in packages, not in Julia base.

Hans W Borchers Köln R User Group Meetup 2014-12-12 8 / 32

Introduction to Julia for R Users Julia syntax and development

Some differences to R

Julia uses = for variable assignment.
Vectors and matrices defined through brackets [,];
matrix multiplication: *, operations: .* ./ .+;
elementwise comparisons: .== .<= .< etc.
No parentheses required in if, for, while constructs.
Use true instead of TRUE; 0 or 1 are not booleans.
Julia distinguishes scalars, vectors, matrices, or arrays by type;
utilize type declarations for error handling.
Function arguments are provided by reference, not by value.
Consequence: Functions can mutate their arguments.
Multiple return values through tuples; no lists or named vectors.

Statistics functionality is provided in packages, not in Julia base.

Hans W Borchers Köln R User Group Meetup 2014-12-12 8 / 32

Introduction to Julia for R Users Julia syntax and development

Some differences to R

Julia uses = for variable assignment.
Vectors and matrices defined through brackets [,];
matrix multiplication: *, operations: .* ./ .+;
elementwise comparisons: .== .<= .< etc.
No parentheses required in if, for, while constructs.
Use true instead of TRUE; 0 or 1 are not booleans.
Julia distinguishes scalars, vectors, matrices, or arrays by type;
utilize type declarations for error handling.
Function arguments are provided by reference, not by value.
Consequence: Functions can mutate their arguments.
Multiple return values through tuples; no lists or named vectors.
Statistics functionality is provided in packages, not in Julia base.

Hans W Borchers Köln R User Group Meetup 2014-12-12 8 / 32

Introduction to Julia for R Users How to speed up functions

Trapezoidal rule — vectorized

function trapz1(x, y)
local n = length(x)
if length(y) != n

error("Vectors must be of same length")
end
sum((x[2:end]-x[1:end-1]).*(y[2:end]+y[1:end-1]))/2

end

» x = linspace(0, pi, 100); y = sin(x);
» println(trapz1(x, y)); gc()
1.9998321638939924
» @time [trapz1(x, y) for i in 1:1000];
elapsed time: 0.020384185 seconds (6921872 bytes allocated)

Hans W Borchers Köln R User Group Meetup 2014-12-12 9 / 32

Introduction to Julia for R Users How to speed up functions

Trapezoidal rule — non-vectorized

function trapz2(x, y)
local n = length(x)
if length(y) != n

error("Vectors ’x’, ’y’ must be of same length")
end
r = 0
if n == 1 return r; end
for i in 2:n

r += (x[i] - x[i-1]) * (y[i] + y[i-1])
end
r / 2

end

» @time [trapz2(x, y) for i in 1:1000];
elapsed time: 0.009617445 seconds (3215904 bytes allocated)

Hans W Borchers Köln R User Group Meetup 2014-12-12 10 / 32

Introduction to Julia for R Users How to speed up functions

Trapezoidal rule — type-stable

function trapz3(x, y)
local n = length(x)
if length(y) != n

error("Vectors ’x’, ’y’ must be of same length")
end
r = 0.0
if n == 1 return r; end
for i in 2:n

r += (x[i] - x[i-1]) * (y[i] + y[i-1])
end
r / 2

end

@time [trapz3(x, y) for i in 1:1000];
elapsed time: 0.001451867 seconds (47904 bytes allocated)

Hans W Borchers Köln R User Group Meetup 2014-12-12 11 / 32

Introduction to Julia for R Users How to speed up functions

Trapezoidal rule — w/o bounds checking

function trapz{T<:Number}(x::ArrayT,1, y::ArrayT,1)
local n = length(x)
if length(y) != n

error("Vectors ’x’, ’y’ must be of same length")
end
r = zero(T)
if n == 1 return r end
for i in 2:n

@inbounds r += (x[i] - x[i-1]) * (y[i] + y[i-1])
end
r / 2

end

» @time [trapz(x, y) for i in 1:1000];
elapsed time: 0.000730233 seconds (47904 bytes allocated)

Hans W Borchers Köln R User Group Meetup 2014-12-12 12 / 32

Introduction to Julia for R Users How to speed up functions

Trapezoidal rule — comparisons
Results and comparison with R and Python

Timings Result µs/loop
trapz1 0.020384185 1.9998321638939924 20.4
trapz2 0.009617445 1.9998321638939929 9.6
trapz3 0.001451867 1.9998321638939929 1.5
trapz 0.000740450 1.9998321638939929 0.75

R: unvect. 285 µs, vect. 19 µs
comp: 78 µs, 15 µs (= Renjin?)
Rcpp: unvect. 3.5 µs (inline)

Python: unvect. 119 µs, vect. 39 µs
numba: unvect. 0.72 µs, vect. 54 µs

MATLAB: unvect. 12 µs, vect. 35 µs
Octave: unvect. 2000 µs, vect. 200 µs

Hans W Borchers Köln R User Group Meetup 2014-12-12 13 / 32

Introduction to Julia for R Users How to speed up functions

Performance tips

Avoid global variables (or make them const).
For best performance, use non-vectorized code;
devectorize array assignments, write explicite loops, etc.
Break functions into multiple definitions, based on types.
Type stability: Avoid changing the type of a variable.
Access arrays in memory order, i.e., along columns.
Avoid arrays with abstract type parameters: Vector{Real}
Pay attention to memory allocations (see macro @time):

preallocate larger data structures (arrays);
avoid the need to copy data structures.

Apply performance annotations if appropriate (e.g., @inbounds)

Hans W Borchers Köln R User Group Meetup 2014-12-12 14 / 32

Introduction to Julia for R Users Type System

Julia’s numerical types

Number
Real

FloatingPoint
BigFloat
Float64 Float32 Float16

Integer
BigInt
Signed

Int128 Int64 [=Int=] Int32 Int16 Int8
Unsigned

Uint128 Uint64 Uint32 Uint16 Uint8
Bool
Char

Rational
Complex

Hans W Borchers Köln R User Group Meetup 2014-12-12 15 / 32

Introduction to Julia for R Users Type System

Operator overloading

» methods(+) # 146 methods for generic function +
+(x::Bool) at bool.jl:34
+(x::Bool,y::Bool) at bool.jl:37
+(y::FloatingPoint,x::Bool) at bool.jl:47
...

» +(s, t) = s * t # would be wrong
» ++(s, t) = s * t # is not possible
» ⊕(s, t) = s * t # is not advisable

» +(s::String, t::String) = s * t
» "123" + "..." + "xyz" #=> "123...xyz"
» +("123", "...", "xyz")
» +(["123", "...", "xyz"]...)

Hans W Borchers Köln R User Group Meetup 2014-12-12 16 / 32

Introduction to Julia for R Users Type System

User-defined (or: composite) types

immutable GaussInt <: Number # or: type GaussInt
a::Int
b::Int
GaussInt(n::Int, m::Int) = new(n, m)

end
GaussInt(1, 1) #=> GaussInt(1,1)

import Base.show, Base.norm, Base.isprime
show(io::IO, x::GaussInt) = show(io, complex(x.a, x.b))
GaussInt(1, 1) #=> 1 + 1im

*(x::GaussInt, y::GaussInt) =
GaussInt(x.a*y.a - x.b*y.b, x.a*y.b + x.b*y.a);

norm(x::GaussInt) = x.a^2 + x.b^2;
isprime(x::GaussInt) = isprime(norm(x)); # wrong!

Hans W Borchers Köln R User Group Meetup 2014-12-12 17 / 32

Introduction to Julia for R Users Optimization Modeling

Optimization packages in Julia

Optim – BFGS, CG, simulated annealing
GLPK, Cbc, Clp – mixed-integer linear programming
CPLEX, Gurobi, Mosek – interfacing commercial systems
Ipopt – interface to the IPOPT nonlinear solver (COIN-OR)
NLopt – interface to the NLopt nonlinear optimization library
ECOS, Convex – (disciplined) convex programming solvers
JuMP, MathProgBase – optimization modeling languages
BlackBoxOptim, JuliaCMAES – global optimization
LsqFit, MinFinder – least-squares, all minima

Hans W Borchers Köln R User Group Meetup 2014-12-12 18 / 32

Introduction to Julia for R Users Optimization Modeling

JuMP – Julia for Mathematical Programming

Domain-specific modeling language for mathematical programming
(i.e., optimization)
Syntax mimics natural mathematical expressions
Problem classes: LP, MILP, SOCP, nonlinear programming
Generic, solver-independent user interface
Supported solvers:
Cbc, Clp, CPLEX, ECOS, GLPK, Gurobi, Ipopt, MOSEK, NLopt
Speed: Problem creation faster than commercial modeling tools
(AMPL, GAMS, etc.)

Hans W Borchers Köln R User Group Meetup 2014-12-12 19 / 32

Introduction to Julia for R Users Optimization Modeling

Modeling example: Knapsack problem

» p = [92, 57, 49, 68, 60, 43, 67, 84, 87, 72];
» w = [23, 31, 29, 44, 53, 38, 63, 85, 89, 82];
» cap = 165; nitems = 10;

» using JuMP, Cbc
» m = Model(solver=CbcSolver())
» @defVar(m, x[1:nitems], Bin)
» @setObjective(m, Max, sum{p[i]*x[i], i=1:nitems})
» @addConstraint(m, sum{w[i]*x[i], i=1:nitems} <= cap)

» status = solve(m)
» getObjectiveValue(m) # 165
» idx = [getValue(x[i]) for i in 1:nitems]
[1,1,1,0,0,0,0,0,0,1] # 1,2,3,10

Hans W Borchers Köln R User Group Meetup 2014-12-12 20 / 32

Introduction to Julia for R Users Optimization Modeling

Automatic Differentiation (AD)
Automatic differentiation “is a set of techniques to numerically
evaluate the derivative of a function specified by a computer program.”
Example: lambertW is an iteratively defined function computing the
Lambert W special function, the reverse of x → x · ex .

» lambertW(1.0) # 0.5671432904097838 Omega const.

» # numerical derivative at 1.0
» using DualNumbers
» lambertW(dual(1.0, 1.0))
0.5671432904097838 + 0.3618962566348892du

» # exact derivative
» 1.0 / (1 + lambertW(1.0) / exp(lambertW(1.0))
0.3618962566348892

Hans W Borchers Köln R User Group Meetup 2014-12-12 21 / 32

Introduction to Julia for R Users Statistics with Julia

Statistics packages in Julia

StatsBase, Distributions
Distances, Clustering
HypothesesTests, KernelDensity
DimensionalityReduction
DataArrays, DataFrames
GLM (Doug Bates)
MCMC

MLBase
NMF, RegERMs
SVM, NeuralNets

Hans W Borchers Köln R User Group Meetup 2014-12-12 22 / 32

Introduction to Julia for R Users Statistics with Julia

DataArrays and DataFrames

» using RDatasets # 700+ R data sets
» planets = dataset("HSAUR", "planets")
» planets[:Mass]

» using DataArrays # NA support
» using DataFrames
» describe(planets) # summary

The DataFrames package supports functionality like the following :
join, split-apply-combine
sorting, reshaping
factors, model frames (formulae)

Hans W Borchers Köln R User Group Meetup 2014-12-12 23 / 32

Introduction to Julia for R Users Calling Other Languages

Calling C and Fortran

Shared library specfun.so has been generated with the R command
“R CMD SHLIB specfun.f”

» x = 0.5
» y = ccall(

(:gamma_,"./specfun"), # (function, library)
Float64, # type of return value
(Ptr{Float64},), # input types as tuple
&x); # input(s)

» y
1.772453850905516 # sqrt(pi)

But: The Julia Core team intends to make possible the compilation of
Julia functions and packages into shared libraries!
BUT: ...

Hans W Borchers Köln R User Group Meetup 2014-12-12 24 / 32

Introduction to Julia for R Users Calling Other Languages

R calling Julia?

“Julia has a nice and simple C interface. So that gets us something like .C().
But as recently discussed on r-devel, you really do not want .C(), in most
cases you rather want .Call() in order to pass actual SEXP variables
representing real R objects. So right now I see little scope for Julia from R
because of this limitation.
Maybe an indirect interface using tcp/ip to Rserve could be a first start
before Julia matures a little and we get a proper C++ interface. [...]
And the end of the day, some patience may be needed. I started to look at
R around 1996 or 1997 when Fritz Leisch made the first announcements on
the comp.os.linux.announce newsgroup. And R had rather limited facilities
then (but the full promise of the S language, of course, so we knew
we had a winner). [...]
Julia may well get there. But for now I suspect many of us will get work
done in R, and have just a few curious glimpses at Julia.”
Dirk Eddelbüttel, Stackoverflow, April 1, 2012

Hans W Borchers Köln R User Group Meetup 2014-12-12 25 / 32

Introduction to Julia for R Users Calling Other Languages

Parallelization

“Julia provides a multiprocessing environment based on message
passing to allow programs to run on multiple [processors] in separate
memory domains at once.”

$ julia -p 2
...
» r = remotecall(1, rand, 2, 2)
» fetch(r)
» @spawn rand(2, 2)
» s = @spawn rand(2, 2)

» @everywhere f(x) = x * exp(x)
» r1 = remotecall_fetch(1, f, 1)
» r2 = remotecall_fetch(2, f, 2)

Hans W Borchers Köln R User Group Meetup 2014-12-12 26 / 32

Introduction to Julia for R Users Plotting and Python

Grammar of Graphics in Julia

» using Gadfly
» xs = linspace(-0.3, 5.0); ys = map(lambertW, xs);
» fig = plot(x=xs, y=ys, Geom.line,

Guide.title="Lambert W function")
» draw(PDF("gadfly.pdf", 4inch, 2inch), fig)

x
-1 0 1 2 3 4 5

y

-0.5

0.0

0.5

1.0

1.5

Lambert W function

Hans W Borchers Köln R User Group Meetup 2014-12-12 27 / 32

Introduction to Julia for R Users Plotting and Python

Calling Python
Example: Function interpolation, symbolic integration

» using PyCall
» xs = [1.0:10]; ys = sqrt(xs);
» @pyimport scipy.interpolate as spi
» fpy = spi.interp1d(xs, ys, kind="cubic")
» pycall(fpy, Float64, pi) # 1.7723495528382518

» using SymPy
» x,y,z = Sym("x y z")
» limit(sin(x)/x, x, 1) # 1
» z = integrate(sin(x)/x, x, 1, Inf)
-Si(1) + 1.5707963267949
» float(z)
0.6247132564277136

Hans W Borchers Köln R User Group Meetup 2014-12-12 28 / 32

Introduction to Julia for R Users References and Outlook

Web Resources

Julia home page: julialang.org
Source Code: github.com/JuliaLang/julia
Personal Package Archives: /juliareleases [0.3], /julianightlies [0.4]
Available packages: http://iainnz.github.io/packages.julialang.org/
Julia Manual: http://docs.julialang.org/en/release-0.3/manual/
Mailing List:
https://groups.google.com/forum/?fromgroups=#!forum/julia-users
Julia Blogroll: http://www.juliabloggers.com/

The Julia Manual is a quite reasonable introduction to the Julia language.

David Sanders: Julia tutorial, SciPy 2014
Steven Johnson: Keynote talk, EuroSciPy 2014

Hans W Borchers Köln R User Group Meetup 2014-12-12 29 / 32

Introduction to Julia for R Users References and Outlook

Editors for Julia development

Julia Studio [outdated, comm.?]
Light Table (w/ Jewel/Juno plugin)
IPython notebook (w/ IJulia)
see the Jupyter project
Editors with syntax highlighting (and auto-completion):
Sublime Text 3 (w/ Sublime-Julia) [Linux]
TextMate [Mac], gedit or Kate [Linux]
Notepad++ [Windows]
Eclipse (w/ LiClipse)
Emacs (w/ julia-mode.el)
vim (w/ julia-vim)

Hans W Borchers Köln R User Group Meetup 2014-12-12 30 / 32

Introduction to Julia for R Users References and Outlook

Julia Special Interest Groups

Special Interest Groups (SIGs) in Julia have a function similar to
the ‘Task Views’ in R, but they also kind of organize the task area.

JuliaOpt – mathematical optimization
JuliaStat – statistics and machine learning
JuliaQuant – quantitative finance
JuliaDiff – differentiation tools
JuliaDB – database integration

BioJulia, JuliaAstro, JuliaQuantum
JuliaSparse, JuliaGPU, JuliaWeb

Hans W Borchers Köln R User Group Meetup 2014-12-12 31 / 32

Introduction to Julia for R Users References and Outlook

Conclusions / Questions

1 Will Julia survive and become a mayor player?
2 . . .
3

4

5

6

7

8

9

10

Hans W Borchers Köln R User Group Meetup 2014-12-12 32 / 32

	Introduction to Julia for R Users
	Overview
	Julia syntax and development
	How to speed up functions
	Type System
	Optimization Modeling
	Statistics with Julia
	Calling Other Languages
	Plotting and Python
	References and Outlook

